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ABSORPTION AND LUMINESCENCE SPECTRA OF 
TETRA(3-PYR1DYL)PORPHYRAZINE: A CONVERGENT 

SPECTROSCOPIC METHOD FOR THE ELUCIDATION 
OF ASSOCIATION REACTIONS IN SOLUTION 
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ABSTRACT 
Tetra(3-pyridy1)porphyrazine is soluble in trifluoroethanol yielding intense 

blue solutions. The electronic spectra exhibit the characteristic Soret and Q bands 
around 330 and 610 nm, respectively; however, the absorption profile is strongly 
dependent on the concentration, reflecting the Occurrence of an association process. 
The system has been elucidated by solving the equilibrium and the absorbance- 
concentration equations for all the wavelengths in the spectral range, according to a 
variational procedure. In this way the consistent spectra of the individual species 
have been generated. The study has also been extended to the luminescence 
properties of the porphyrazine molecule, and discussed in terms of the ground state 
association and the exciplex formation involving the monomeric species. 
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INTRODUCTION 
The spectral properties of the porphyrins and related species have been a 

subject of great interest, because of their relevance to biological systems, 

photodynamic therapy and supramolecular chemistry l-9. In general, this class of 

compounds exhibits strong tendency to form aggregates6v*p10.1 and the neutral 
species are insoluble in most of the conventional organic solvents. As a 
consequence, most of the studies in solution has been restricted to the protonated or 
functionalized species. In the last few years, we have been surprised by the 
unusual solvent properties of trifluoroethanol. This has shown to be a particularly 
efficient and mild solvent for the porphyrin type of compounds, facilitating the 

synthesis of new supramolecular species12 and making possible studies in solution, 
which were otherwise precluded by the lack of solubility. Here we report on the 
association behavior of the tetra(3-pyridy1)porphyrazine compound (1) in 
trifluoroethanol solutions. We also describe a versatile approach to evaluate the 
equilibrium constants and the spectrum of all species involved in the equilibria, 
based on a spectral convergence method. The structure of compound 1 is 
shown in F i g .  1. 

EXPERIMENTAL 
The free-base porphyrazine was synthesized and purified as previously 

reported in the literaturel3. Elemental analysis for C,,H,$i,,O, exp. (calc.): C = 
59.4 (58.7), H = 3.6 ( 3 . 9 ,  N = 28.1 (29.3). 

The electronic and luminescence spectra were obtained by means of a 
Hewlett Packardt 8453A diode array spectrophotometer or a Photon Technology 
Inc. LSlOO spectrofluorimeter, respectively. Trifluoroethanol solutions of 
porphyrazine, in the 0.3 to 80 pmol dm-3 concentration range, were used in the 
experiments. These solutions were purged with argon for 30 minutes, just before 
the luminescence measurements, in order to minimize the luminescence quenching 
by dioxygen. All the measurements were carried out employing a triangular quartz 
cell. 
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Fig. 1. Structure of the free-base tetra(3-pyridy1)porphyrazine. 

RESULTS AND DISCUSSION- 
The tetra(3-pyridy1)porphyrazine (TPyPz) compound has been isolated in 

the free-base form as a black solid, insoluble in almost all solvents, in analogy with 
the porphynns and phthalocyanines. As a consequence, studies in solution have 

only been performed for the N-methylated species13-16, or in the presence of acids, 
which convert the porphyrazine into the soluble N-protonated species. In the last 
few years, we have observed that, in contrast with the conventional solvents, 
trifluoroethanol is particularly effective in dissolving the porphyrazine species, 
yielding stable, bright blue solutions, suitable for spectroscopic work. 

The electronic spectra of trifluoroethanol solutions of TPyPz, from 0.86 to 

61 pmol dni3, are shown in Fig. 2. Two broad absorption envelopes can be seen 

at 330 nm and 610-670 nm, ascribed to the Soret and the Q transitions, 
respectively. At higher concentrations, the Q bands envelope is dominated by a 
broad absorption at 610 nm, but the narrow band at 675 nm becomes more and 
more prominent as the concentration is lowered. This type of spectral dependence 
on concentration is characteristic of an association process involving the soluble 
porphyrins or phtalocyanines. Nevertheless, the association reactions involving the 
neutral species have not been investigated because of the solubility constraint. 

In general. the monomer and the associated species are present in 
equilibrium even at very low concentrations (e.g. lO-’mol dm-3). Furthermore, the 
spectral analysis can be complicated by the strong superimposition of the 
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Fig. 2. Spectra of the TPyPz in trifluoroethanol solution, in the 
0.86~10.~ to 6 1 ~ 1 0 . ~  mol.dm” concentration range. 

absorption bands and the absence of isosbestic pointsll. This is the case for the 
porphyrazine species here investigated (see Fig. 2), precluding the use of direct 
methods to calculate the association constants. 

In the present case, a well behaved trend was observed in the Q band 
profile, in the l o 5  to 10.’ mol dm” concentration range, suggesting the occurrence 

of a monomer-dimer equilibrium, 2M * D, where KD = [D]/[M]* 

From the total concentration [C,] = [MI + 2[D], it follows that 

[Dl = {JGI-FIIW and K, = ~ ~ ~ o l - M ~ ~ 2 [ M 1 2 .  

For a given value of [GI, K, can be readily obtained from the 
corresponding values of FI] and [D] in equilibrium. In this case, however, the 
absorption spectrum of the monomer and the dimer species should be previously 
known. 
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In order to circumvent the problem, one can try a variational procedure, 

starting from the measured absorbances at a wavelength A, Abs(A), for two or 

more different concentrations (e.g., 1 and 2), as expressed by 

where E~ and E, are the absorptivities (per mol) of the monomer and the dimer 

species, respectively. By combining Eq. 1 and eq. 2, the following expression can 

be obtained for &,(A): 

eq. 3 PllAbS20c) - [D12AbSl()c-) 

PlIM2 - D12M1 
EM (A>'= 

Therefore, by assuming an equilibrium constant K,, one can calculate the 
hypothetical spectrum of the monomer (and of the dimer) from the absorbance 
measurements at the several wavelengths. As a consequence, every distinct value of 
K, should lead to a different spectrum for the several concentrations employed, 
except when K, approaches or coincides with the real value. In this case, all the 
calculated spectra should converge and match, since K, expresses the true 
equilibrium constant for the system. The spectral convergence criterion not only 
allows the determination of K, but also provides an effective way of deducing the 
correct spectra of the species in equilibrium. In addition, it can also be employed to 
exclude the existence of aggregate species other than the dimer, since in this case, 
the calculated spectra would not converge. 

A simple way to perform the calculations is by using a worksheet 
containing the digitalized spectra and the complete cross referenced data, in such a 
way that the only variable is K,. Thus, the value of the equilibrium constant can be 
varied as in a self-consistent process, ending up with the convergence of the 
calculated spectra for the dimer and monomer species. The convergence method 
was successfully applied in this work, leading to the calculated spectra of the 

monomer and the dimer, shown in Fig. 3, and K, = 4 (*1) xl@ rno1-l dm3. This 
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Fig. 3 .  Convergence of the calculated spectra of the monomer (top) and the dimer 
(bottom), for nine different combinations of the experimentally measured 
spectra, shown in Fig. 2. 

value is lower than the one found by Yang et all.11 for the tetrasulfonated cobalt 
phthalocyanine in aqueous solution (K = 2x106 moI*.L-'), or by Kobayashi et 

a116$*7 for the crown ether substituted phthalocyanines dimerization induced by 
cations (K = 5x109 mo12.L-'. for K+). In the last case, the constant tends to be much 
higher because of the extra stability gained by the dimer as a consequence of the 
formation of crown ether/K+ complexes. 
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The calculated spectrum for the monomer bears some similarity with those 

reported for the protonated or methylated species 14, exhibiting the Soret band at 
349 and the four Q bands at 597,613,642 and 676 nm. The dimer exhibits the 
Soret band at 323 nm and the Q bands at 607 (broad) and 655 nm (narrow). 
These two components can be observed in the absorption spectrum of the 
concentrated solutions (Fig. 2), at the corresponding wavelengths, superimposed to 
the bands of the monomer species. 

Luminescence Study 
The TPyPz species in solution exhibits a sharp and intense fluorescence 

band at 684 nm, when excited in the Soret and Q bands. The corresponding 
excitation spectrum has a profile similar to the monomer absorption spectrum, as 
can be seen in Fig. 4, indicating that the emission comes from this species and not 
from the dimer. However, the luminescence intensity was not a linear function of 
the concentration of the monomeric species, for [C,,] = 0.34-82~10’~ rnol dm”, 
suggesting the occurrence of quenching mechanisms. Accordingly, two possible 
mechanisms were examined: 

M + h v  - M* excitation 

M* M+hv’  emission 

M * + D  M+D+hea t  mechanism 1 

M* + M k, D*- D + heat mechanism 2 

Mechanism 1 involves the hypothetical collisional quenching of the 
monomer excited state emission by the dimer species. Mechanism 2 corresponds to 
the formation of a non emitting exciplex species, via the interaction of ht with the 
ground state M molecules. 

Both mechanisms can be included in the corrected Stern-Volmer equation, 

-- I0 [MI = 1 + kJD] + k e r n  
I N o 1  

eq. 4 

where, I,, = integrated luminescence intensity of the more dilute solution, I = 
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Fig. 4. Emission spectra of TPyPz in trifluoroethanol solutions, in the 0.34 to 
82x lo6 mol.dm” concentration range (full lines, h,,,=340 nm) and a typical 
excitation spectrum (dotted line, h,,=710 nm). Inset: Stern-Volmer plot of 
I,[M]/IM] as a function of the calculated monomer concentration. 

integrated luminescence of the solutions, m] = monomer concentration in the 
more dilute solution, W] and [D] = calculated monomer and dimer concentrations, 
respectively. 

The best fit of the experimental data was obtained by neglecting completely 
the mechanism 1, as can be seen in the linear plot of I J M I I I ~ ]  versus W] 
(Fig. 4, inset). The plot exhibits a linear coefficient of 1.06 and a slope equal to 
5 .9x ld  mol d t ~ ~ ~ s ’ ’ ,  with a correlation parameter better than 0.99. 

Therefore, from the Stem-Volmer results, one can conclude that the 
quenching of the fluorescence emission of the monomeric species occurs solely via 
the formation of the non-emiting exciplex species, and that the dimer species does 
not emit either. 
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